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ABSTRACT 

In this research work the problem of melody extraction 
from polyphonic audio is addressed. A multi-stage ap-
proach is followed, inspired on principles from percep-
tual theory and musical practice. Physiological models 
and perceptual cues of sound organization are incorpo-
rated into the method, mimicking the behavior of the 
human auditory system to some extent. Moreover, musi-
cological principles are applied, in order to support the 
identification of the musical notes that convey the main 
melodic line.  

The system comprises three main modules, where a 
number of rule-based procedures are proposed: i) pitch 
detection, where an auditory model-based pitch detector 
is employed for selecting multiple pitches in each analy-
sis frame; ii) determination of musical notes (with precise 
temporal boundaries and pitches); and iii) identification 
of melodic notes, based on two core assumptions that we 
designate as the salience principle and the melodic 
smoothness principle.  

Experimental results were conducted, showing that 
the method performs satisfactorily under the specified 
assumptions, namely when the notes comprising the mel-
ody are in general more intense than the accompanying 
instruments. However, additional difficulties are encoun-
tered in song excerpts where the intensity of the melody 
in comparison to the surrounding accompaniment is not 
so favorable. 

 
 
 

1 INTRODUCTION 

This paper outlines an algorithm for melody detection in 
polyphonic audio signals. The proposed system 
comprises three main stages, as illustrated in Figure 1. 
Different parts of the system were described in greater 
detail detailed in other publications, e.g., [1, 2, 3, 4]. 

In the Multi-Pitch Detection (MPD) stage, the objec-
tive is to capture the most salient pitch candidates, which 
constitute the basis of possible future notes. 

Unlike most other melody-extraction systems, we at-
tempt to explicitly distinguish individual musical notes 
(in terms of their pitches, timings, and intensity levels). 
This is the goal of the second stage of the algorithm (De-
termination of Musical Notes, in Figure 1). Here, we 
first create pitch tracks by connecting pitch candidates 
with similar frequency values in consecutive frames (the 
pitch trajectory construction, or PTC, step). The result-
ing pitch tracks may contain more than one note and 
should, therefore, be segmented in time. This is per-
formed in two phases, namely frequency-based segmen-
tation and salience-based segmentation. 

In the last stage, our goal is to identify the final set of 
notes representing the melody of the song under analy-
sis. To this end, ghost harmonically-related notes are 
first eliminated based on perceptual sound organization 
principles such as harmonicity and common fate. Then, 
we select the notes with highest pitch salience at each 
moment. The melodic contour is then smoothed out, 
based on the fact that pitch intervals between consecu-
tive are usually small in tonal melodies. 

 

 

Figure 1. Melody detection system overview. 



 
 

 
Each of the modules will be described in the next sec-
tions. 

2 MULTI-PITCH DETECTION (MPD) 

In the first stage of the algorithm, Multi-Pitch Detection 
(MPD) is conducted, with the objective of capturing the 
most salient pitch candidates in each time frame that con-
stitute the pool of possible future notes.   

Our pitch detector is based on Slaney and Lyon’s 
auditory model [5], using 46.44-msec frames with a hop 
size of 5.8 msec. This analysis comprises four stages:  

i) Conversion of the sound waveform into auditory 
nerve responses for each frequency channel, using a 
model of the ear, with particular emphasis on the coch-
lea, obtaining a so-called cochleagram;  

ii) Detection of the main periodicities in each fre-
quency channel using auto-correlation, from which a 
correlogram results;  

iii) Detection of the global periodicities in the sound 
waveform by calculation of a summary correlogram 
(SC); 

iv) Detection of the pitch candidates in each time 
frame by looking for the most salient peaks in the SC 
(maximum of five peaks selected). For each obtained 
pitch, a pitch salience is computed, which is approxi-
mately equal to the energy of the corresponding funda-
mental frequency (F0). 

The four steps described are graphically illustrated in 
Figure 3, for a simple monophonic saxophone riff. The 
algorithm is described in greater detail in [3]. 

 

3 DETERMINATION OF MUSICAL 
NOTES 

After multi-pitch detection, the goal is to quantize the 
temporal sequences of pitch estimates into note symbols 
characterized by precise timings and pitches (e.g., MIDI 
note numbers). This is carried out in three steps: pitch 
trajectory construction, frequency-based segmentation 

and salience-based segmentation (with onset detection 
directly on the raw signal). 
 
3.1 Pitch Trajectory Construction (PTC) 
In the Pitch Trajectory Construction (PTC), we first 
create pitch tracks by connecting pitch candidates with 
similar frequency values in consecutive frames. We 
based our approach on the algorithm proposed by Xavier 
Serra [6]. The general idea is to find regions of stable 
pitches that indicate the presence of musical notes.  

This algorithm is graphically illustrated in Figure 2. 
There, the black squares represent the candidate pitches 
in the current frame n. The black circles connected by 
thin continuous lines indicate the trajectories that have 
not been finished yet. The dashed lines denote peak con-
tinuation through sleeping frames. The black circles 
connected by bold lines stand for validated trajectories, 
whereas the white circles represent eliminated trajecto-
ries, due to too short lengths. Finally, the gray boxes 
indicate the maximum allowed frequency deviation for 
peak continuation in the corresponding frame. 
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Figure 2. Illustration of the PTC algorithm. 

 
To avoid losing information on the dynamic proper-

ties of musical notes, we took special care to keep phe-
nomena such as vibrato and glissando within a single 
track. This is illustrated in Figure 4.
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Figure 3. Illustration of the four stages of the MPD algorithm. 
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Figure 4. Results of the PTC algorithm. 

 
There, we can see that some of the obtained trajecto-

ries comprise glissando regions. Also, some of the tra-
jectories include more than one note and should, there-
fore, be segmented. 
 
3.2 Frequency-based Segmentation 
 
In frequency-based segmentation, the goal is to separate 
all notes of different pitches that might be present in the 
same trajectory. This is accomplished by approximating 
the pitch sequence in each track by a set of piecewise 
constant functions (PCFs), handling glissando, legato, 
vibrato, and frequency modulation in general. Each 
detected function will then correspond to a MIDI note. 
Despite this quantization effect, the original pitch 
sequences are still kept so that the information on note 
dynamics is not lost. 

This is often a complex task, since musical notes, be-
sides containing regions of approximately stable fre-
quency, also contain regions of transition, where fre-
quency evolves until (pseudo-)stability, e.g., glissando. 
Additionally, frequency modulation can also occur, 
where no stable frequency exists. Yet, an average stable 
fundamental frequency can be determined. 

Our problem, could, thus, be characterized as one of 
finding a set of piecewise-constant/linear functions that 
best approximates the original frequency curve. As un-
known variables we have the number of functions, their 
respective parameters (slope and bias – null slope if 
PCFs are used), and start and end points. The proce-
dures conducted towards this goal are described in detail 
in [4]. 

In short words, our algorithm first quantizes the fre-
quency values present in each track to the closest MIDI 
note numbers, thus obtaining a set of initial PCFs. Then, 
in order to cope with glissandos and oscillations result-
ing from vibrato, as well as frequency jitter and errors in 
the MPD stage, several stages of filtering are applied in 
order to merge relevant PCFs. 

After filtering, the precise timings for the starting end 
ending points of each PCF are adjusted. We define the 
start of the transition as the point of maximum derivative 
of the frequency curve, after it starts to move towards 
the next note, i.e., the point of maximum derivative after 
the last occurrence of the median value. 

Finally, we assign a definitive MIDI note number to 
each of the obtained PCFs for each track. In order to 
increase the robustness of the assignment procedure, we 
deal with ambiguous situations where it is not totally 
clear which is the correct MIDI value, a situation that 

might result from imperfect tuning. This happens, for 
instance, when the median frequency is close to the fre-
quency border of two MIDI notes. 

The frequency-based segmentation algorithm is illus-
trated in Figure 5, for a pitch track from a female opera 
excerpt with strong vibrato. There, dots denote the F0 
sequence under analysis, grey lines are the reference 
segmentations, dashed lines denote the results attained 
prior to time correction and final note labelling and solid 
lines stand for the final achieved results. It can be seen 
that the segmentation methodology works quite well in 
these examples, despite some minor timing errors that 
may have even derived from annotation inaccuracies. 
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Figure 5. Illustration of the frequency-based 
segmentation algorithm. 

The algorithm for frequency segmentation is based on 
a minimum note duration of 125 msec. This threshold 
was set based on the typical note durations in Western 
music. As Albert Bregman points out, “Western music 
tends to have notes that are rarely shorter than 150 msec 
in duration” [7, p. 462]. We experimented with a range 
between 60 and 150 msec, but the defined threshold of 
125 msec led to the best results. It is noteworthy that this 
value is close to the one mentioned by Bregman. 

3.3 Salience-Based Segmentation 

With segmentation based on pitch salience variations, the 
objective is to separate consecutive notes at the same 
pitch that the PTC algorithm may have mistakenly 
interpreted as forming only one note. This requires 
trajectory segmentation based on pitch-salience minima, 
which mark the temporal boundaries of each note. To 
increase the robustness of the algorithm, note onsets are 
detected directly from the audio signal and used to 
validate the candidate salience minima found in each 
pitch track.  

In fact, the salience value depends on the evidence of 
pitch for that particular frequency, which is strongly 
correlated, though not exactly equal, to the energy of the 
fundamental frequency under consideration. Conse-
quently, the envelope of the salience curve is similar to 
an amplitude envelope: it grows at the note onset, has 
then a steadier region and decreases at the offset. In this 
way, notes can be segmented by detecting clear minima 
in the pitch salience curve. 

In a first attempt for performing salience-based seg-
mentation, we developed a prominent valley detection 
algorithm, which iteratively looks for all clear local min-
ima and maxima of the salience curve.  

To this end, first, all local minima and maxima are 
found. Then, only clear minima are selected. This is 
accomplished in a recursive procedure that starts by 



 
 
finding the global minimum of the salience curve. Next, 
the set of all local maxima is divided into two subsets, 
one to the left and another to the right of the global 
minimum. The global maximum for each subset is then 
obtained. After that, the global minimum is selected as a 
clear minima if its prominence, i.e., the minimum dis-
tance from its amplitude and that of both the left and 
right global maxima, is above the defined minimum 
peak-valley distance, minPvd.  

Finally, the set of all local minima is also divided into 
two new intervals, to the left and right of the global 
minimum. The described procedure is then recursively 
repeated for each of the new subsets until all clear min-
ima and respective prominences are found.  

One difficulty of the proposed approach is its lack of 
robustness. In fact, the best value for minPvd was found 
to vary from track to track, along different song ex-
cerpts. In fact, a unique value for that parameter leads to 
both missing and extra segmentation points. Also, it is 
sometimes difficult to distinguish between note endings 
and amplitude modulation in some performances. There-
fore, we improved our method by performing onset de-
tection and matching the obtained onsets with the candi-
date segmentation points that resulted from our promi-
nent valley detection algorithm. Onset detection was 
performed based on Scheirer [8] and Klapuri [9]. 

Figure 6 illustrates our algorithm for detection of can-
didate segmentation points. There, the pitch salience 
curve of a trajectory from Claudio Roditi’s performance 
of “Rua Dona Margarida” is presented, where ‘o’ repre-
sent correct segmentation candidates and ‘*’ denote ex-
tra segmentation points. Only the correct segmentation 
candidates should be validated based on the found on-
sets. 
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Figure 6. Illustration of the salience-based 
segmentation algorithm: initial candidate points. 

 
The results of the salience-based segmentation algo-

rithm for an excerpt from Claudio Roditi’s “Rua Dona 
Margarida” are presented in Figure 7.  
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Figure 7. Results of the salience-based 
segmentation algorithm. 

 

 
There, gray horizontal lines represent the original an-

notated notes, whereas the black lines denote the ex-
tracted notes. The small gray vertical lines stand for the 
correct segmentation points and the black vertical ones 
are the obtained results of our algorithm. It can be seen 
that there is an almost perfect match when this solution 
is followed. However, in some excerpts extra segmenta-
tion occurs, especially in those excerpts with strong am-
plitude modulation. 

The procedures carried out for salience-based seg-
mentation are described in greater detail in [4]. 

4 IDENTIFICATION OF MELODIC 
NOTES 

After the first two stages of our system (see Figure 1), 
several notes from each of the different instruments 
present in the piece under analysis are obtained, among 
which the main melody must be identified. The 
separation of the melodic notes in a musical ensemble is 
not a trivial task. In fact, many aspects of auditory 
organization influence the perception of the main melody 
by humans, for instance in terms of the pitch, timbre, and 
intensity content of the instrumental lines in the sonic 
mixture. We start this stage by disposing of ghost octave 
notes 

4.1 Elimination of Ghost Octave Notes 

The set of candidate notes resulting from trajectory 
segmentation typically contains several ghost octave 
notes. The partials in each such note are actually 
multiples of the true note’s harmonics (if the ghost 
octave note is higher than the true note) or submultiples 
(if it is lower). Therefore, the objective of this step is to 
discard such notes. 

In short, we look for harmonic relations between all 
notes, based on the fact that some of the obtained pitch 
candidates are actually harmonics or sub-harmonics of 
true fundamental frequencies in the sound wave. There-
fore, we make use of the perceptual rules of sound or-
ganization designated as harmonicity and common fate 
[7]. Namely, we look for pairs of octave-related notes 
with common onsets or endings and with common 
modulation, i.e., whose frequency and salience se-
quences change in parallel. We then delete the least-
salient note if the ratio of its salience to the salience of 
the other note is below a defined threshold. 

Regarding common fate analysis, we exploit the fact 
that frequency sequences belonging to the same note 
tend to have synchronized and parallel changes in fre-
quency and intensity (here represented by pitch sali-
ence). Thus, we measure the distance between frequency 
curves for pairs of octave-related note candidates. Simi-
larly, we measure the distance between their salience 
curves. Formally, the distance between frequency curves 
is calculated according to Eq. 1, based on [10]: 
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where df, represents the distance between two frequency 
trajectories, fi(t) and fj(t), during the time interval [t1, t2] 



 
 
where they both exist. The idea of Eq. (1) is to scale the 
amplitude of each curve by its average, thus, normalizing 
it. An identical procedure is performed for the salience 
curves.   

This procedure is illustrated in Figure 8 for two har-
monically-related notes from an opera excerpt with 
strong of vibrato.  We can see that the normalized fre-
quency curves are very similar, which provide good evi-
dence that the notes originated from the same source.  
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Figure 8. Illustration of similarity analysis of 
frequency curves. 

 
Additionally, we found it advantageous to measure 

the distance between the normalized derivatives of fre-
quency curves (and, likewise, the derivatives of salience 
curves). In fact, it is common that these curves have high 
absolute distances despite exhibiting the same trends. 
The distance between derivatives is used as another 
measure of curve similarity. 

To conclude the common modulation analysis, we as-
sume that the two candidate notes have parallel changes 
if any of the four computed distances (i.e., in frequency, 
salience, or their derivatives) are below a threshold of 
0.04. Finally, we eliminate one of the notes if its salience 
is less than 40% of the most salient note if they differ by 
one octave, 20% if they differ by two octaves, and so 
forth. 
 

4.2. Selection of the Most Salient Notes 

As previously mentioned, intensity is an important cue 
in melody identification. Therefore, we select the most 
salient notes as an initial attempt at melody identifica-
tion.  

The salience principle makes use of the fact that the 
main melodic line often stands out in the mixture. Thus, 
in the first step of the melody extraction stage, the most 
salient notes at each time are selected as initial melody 
note candidates. Details of this analysis are provided in 
[1, 2]. 
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Figure 9. Results of the algorithm for extraction 
of salient notes. 

The results of the implemented procedures are illus-
trated in Figure 9, for an excerpt from Pachelbel’s Ca-
non in D. There, the correct notes are depicted in gray 
and the black continuous lines denote the obtained mel-
ody notes. The dashed lines stand for the notes that re-
sult from the note elimination stage. We can see that 
some erroneous notes are extracted, whereas true mel-
ody notes are excluded. Namely, some octave errors 
occur.  

One of the limitations of only taking into considera-
tion pitch salience is that the notes comprising the mel-
ody are not always the most salient ones. In this situa-
tion, erroneous notes may be selected as belonging to 
the melody, whereas true notes are left out. This is par-
ticularly clear when abrupt transitions between notes are 
found, as illustrated in Figure 9. 

In fact, small frequency intervals favor melody coher-
ence, since smaller steps in pitch result in melodies more 
likely to be perceived as single 'streams'. Hence, we im-
proved our method by smoothing out the melody con-
tour, as follows. 

4.3 Melody Smoothing 

As referred to above, taking into consideration only the 
most salient notes has the limitation that, frequently, 
non-melodic notes are more salient than melodic ones. 
As a consequence, erroneous notes are often picked up, 
whereas true notes are excluded. Particularly, abrupt 
transitions between notes give strong evidence that 
wrong notes were selected. In fact, small frequency tran-
sitions favor melody coherence, since smaller steps in 
pitch hang together better [7]. 

Briefly, our algorithm starts with an octave correction 
stage, which aims to tackle some of the octave errors 
that appear as a consequence of the fact that not all har-
monically-related notes are deleted at the note elimina-
tion stage.  

In the second step, we analyze the obtained notes and 
look for regions of smoothness, i.e., regions where there 
are no abrupt transitions between consecutive notes. 
Here, we define a transition as being abrupt if the inter-
vals between consecutive notes are above a fifth, i.e., 
seven semitones, as illustrated in Figure 10. There, the 
bold notes (a1, a2 and a3) are marked as abrupt. In the 
same example, four initial regions of smoothness are 
detected (R1, R2, R3 and R4).  
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Figure 10. Regions of smoothness. 

 
Then, we analyze the regions of smooth, deleting or 

substituting notes corresponding to abrupt transitions, as 
described in detail in [1, 2]. 



 
 

The results of the implemented procedures are illus-
trated in Figure 11, for the same excerpt from Pachel-
bel’s Canon presented before. We can see that only one 
erroneous note resulted (signaled by an ellipse), which 
corresponds to an octave error. This example is particu-
larly challenging to our melody-smoothing algorithm 
due to the periodic abrupt transitions present. Yet, the 
performance was very good. 
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Figure 11. Results of the melody-smoothing 
algorithm. 

4.4 Elimination of False Positives 

When pauses between melody notes are fairly long, 
spurious notes, resulting either from noise or background 
instruments, may be included in the melody. We 
observed that, usually, such notes have lower saliences 
and shorter durations, leading to clear minima in the 
pitch salience and duration contours. 

Regarding the pitch salience contour, we start by 
computing the average pitch salience of each note in the 
extracted melody and, then, look for deep valleys in the 
pitch salience sequence. As with salience-based segmen-
tation, we detect clear minima in the salience contour 
and delete notes in deep valleys of the pitch salience 
contour.  

Regarding the duration contour, we proceeded like-
wise. However, we observed that duration variations are 
much more common than pitch salience variations. In 
this way, we decided to eliminate only isolated abrupt 
duration transitions, i.e., isolated notes delimited by 
much longer notes. Additionally, in order not to inadver-
tently delete short ornamental notes, a minimum differ-
ence of two semi-tones was defined. 

This algorithm is described with more detail in [4]. 

5 EXPERIMENTAL RESULTS 

One difficulty regarding the evaluation of MIR systems 
comes from the lack of meaningful standard test collec-
tions and benchmark problems. This was partly solved 
through the creation of a set of evaluation databases for 
the ISMIR 2004 Melody Extraction Contest (MEC-04) 
and for MIREX 2005.  

Thus, we evaluated the proposed algorithms with 
both the MEC-04 database and a small database we had 
previously created. Each of these databases were de-
signed taking into consideration diversity and musical 
content. Therefore, the selected song excerpts contain a 
solo (either vocal or instrumental, corresponding to the 
main melody) and accompaniment parts (guitar, bass, 
percussion, other vocals, etc.). Additionally, in some 
excerpts, the solo is absent for some time. In our test 
bed, we collected excerpts of about 6 sec from 11 songs 

that were manually annotated with the correct notes. As 
for the MEC-04 database, 20 excerpts, each around 20 
sec, were automatically annotated based on monophonic 
pitch estimation from multi-track recordings, as de-
scribed in [11]. From these, we employed the defined 
training set, consisting of 10 excerpts. 

Regarding multi-pitch detection, we achieved 81.0% 
average pitch accuracy (nearly the same, i.e., 81.2%, if 
octave errors are ignored). 

As for note determination, pitch tracks were seg-
mented with reasonable accuracy. In terms of frequency-
based segmentation, average recall (i.e., the percentage 
of annotated segmentation points correctly identified, 
was 72%, and average precision (i.e., the percentage of 
identified segmentation points that corresponded to ac-
tual segmentation points) was 94.7%. Moreover, the 
average time error was 28.8 msec (which may be slightly 
distorted by annotation errors), and the average semitone 
error rate for the melodic notes was 0.03%. 

Regarding salience-based segmentation, many false 
positives resulted, with a consequent decrease in average 
precision (41.2%), against 75.0% average recall. 

As for the elimination of ghost notes, an average of 
38.1% of notes from the note-determination stage were 
eliminated, among which only 0.3% of true melodic 
notes were inadvertently deleted. 

Finally, in terms of melody identification, 84.4% av-
erage accuracy was attained considering only the me-
lodic notes. The achieved performance decreases when 
we take also into account the regions where the main 
melody is absent. There, no notes should be output. 
Thus, in these “empty” frames we define a target F0 of 
0Hz which should be matched against the generated 
melody. In this case the melody detection accuracy 
drops to 77%. In fact, our algorithm shows a limitation 
in disposing of false positives (i.e., accompaniment or 
noisy notes): 31.0% average recall and 52.8% average 
precision. This is a direct consequence of the fact that 
the algorithm is biased detecting the maximum of me-
lodic notes, no matter if false positives are included. A 
pilot study employing note clustering was conducted to 
improve this limitation, which needs to be further elabo-
rated. 

We also evaluated our system in the MIREX 2005 
database. There, the average accuracy dropped to 61.1% 
(considering both melodic and non-melodic frames). 
The main apparent cause for this decrease was that the 
signal to noise ratio in the used excerpts was not so fa-
vourable, i.e., the ratio of the energy of the melodic part 
against “all the rest” was not so high. 
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