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ABSTRACT 1 INTRODUCTION

In this research work the problem of melody extcact This paper outlines an algorithm for melody detattin
from polyphonic audio is addressed. A multi-stage a polyphonic audio signals. The proposed system
proach is followed, inspired on principles from gep- comprises three main stages, as illustrated inr&igu
tual theory and musical practice. Physiological eied Different parts of the system were described iratge
and perceptual cues of sound organization are poeor detail detailed in other publications, e.g., [1324].
rated into the method, mimicking the behavior o th In the Multi-Pitch Detection (MPD) stage, the objec
human auditory system to some extent. Moreoverj-mudive is to capture the most salient pitch candisiatich
cological principles are applied, in order to suppgbe constitute the basis of possible future notes.
identification of the musical notes that convey thain Unlike most other melody-extraction systems, we at-
melodic line. tempt to explicitly distinguish individual musicabtes
The system comprises three main modules, where(& terms of their pitches, timings, and intensayels).
number of rule-based procedures are proposedtdh pi This is the goal of the second stage of the algoritDe-
detection, where an auditory model-based pitchotiete termination of Musical Notes, in Figure 1). Hereg w
is employed for selecting multiple pitches in eacfaly- first create pitch tracks by connecting pitch cdatis
sis frame; ii) determination of musical notes (wittecise  with similar frequency values in consecutive frar(tbe
temporal boundaries and pitches); and iii) idecdifion pitch trajectory construction, or PTC, step). Tkeuit-
of melodic notes, based on two core assumptiorismba ing pitch tracks may contain more than one note and
designate as the salience principle and the melods&hould, therefore, be segmented in time. This is pe
smoothness principle. formed in two phases, namely frequency-based segmen
Experimental results were conducted, showing thaation and salience-based segmentation.
the method performs satisfactorily under the spestif In the last stage, our goal is to identify the fiset of
assumptions, namely when the notes comprising #le m notes representing the melody of the song unddy-ana
ody are in general more intense than the accomp@nyisis. To this end, ghost harmonically-related ncies
instruments. However, additional difficulties arceun- first eliminated based on perceptual sound org#niza
tered in song excerpts where the intensity of tiedody principles such as harmonicity and common fate.nThe
in comparison to the surrounding accompanimenits nwe select the notes with highest pitch salienceaah
so favorable. moment. The melodic contour is then smoothed out,
based on the fact that pitch intervals between exmns
tive are usually small in tonal melodies.
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Figure 1. Melody detection system overview.



Each of the modules will be described in the next-s and salience-based segmentation (with onset detecti
tions. directly on the raw signal).

2 MULTI-PITCH DETECTION (MPD) 3.1 Pitch Trajectory Construction (PTC)
In the Pitch Trajectory Construction (PTC), we ffirs

In the first stage of the algorithm, Multi-Pitch®etion  create pitch tracks by connecting pitch candidatits
(MPD) is conducted, with the objective of capturthg  similar frequency values in consecutive frames. We
most salient pitch candidates in each time fraraéd¢bn-  pased our approach on the algorithm proposed byeXav

stitute the pool of possible future notes. Serra [6]. The general idea is to find regions @bk
Our pitch detector is based on Slaney and Lyon'gitches that indicate the presence of musical notes
auditory model [5], using 46.44-msec frames witto@ This algorithm is graphically illustrated in Figuge

size of 5.8 msec. This analysis comprises fourestag  There, the black squares represent the candidateepi

i) Conversion of the sound waveform into auditoryin the current frama. The black circles connected by
nerve responses for each frequency channel, using tgin continuous lines indicate the trajectoriest thave
model of the ear, with particular emphasis on thehe  not been finished yet. The dashed lines denote pesak
lea, obtaining a so-called cochleagram; tinuation through sleeping frames. The black cicle

i) Detection of the main periodicities in each-fre connected by bold lines stand for validated trajees,
quency channel using auto-correlation, from which ayhereas the white circles represent eliminatedbdtaj
correlogram results; ries, due to too short lengths. Finally, the graxds

iif) Detection of the global periodicities in theuwnd  indicate the maximum allowed frequency deviation fo
\(Nsa(\:/)eform by calculation of a summary correlogrampeak continuation in the corresponding frame.

iv) Detection of the pitch candidates in each time

frame by looking for the most salient peaks in 8@ e .
(maximum of five peaks selected). For each obtained ‘ ‘*““ ""’f f ‘ |
pitch, a pitch salience is computed, which is agpro 8| ;-
mately equal to the energy of the correspondingldun gl i .
mental frequency (FO). 2| | -4 e
The four steps described are graphically illusttate gl - oo .o
Figure 3, for a simple monophonic saxophone rifieT = QW k").
algorithm is described in greater detail in [3]. L om
12 Frame Number n-2n-1n
3 DETERMINATION OF MUSICAL

NOTES Figure 2. lllustration of the PTC algorithm.

After multi-pitch detection, the goal is to quastithe
temporal sequences of pitch estimates into notésisn X h
characterized by precise timings and pitches (Mgpl  ti€s of musical notes, we took special care to kutep-
note numbers). This is carried out in three stgitsh nomena such as vibrato and glissando within a eingl
trajectory construction, frequency-based segmentati track. This is illustrated in Figure 4.

To avoid losing information on the dynamic proper-
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Figure 3. lllustration of the four stages of the MPD aldiom.



%0 : might result from imperfect tuning. This happenst f

| | | — | instance, when the median frequency is close tdréie
. 80— = -~ P P mo o N quency border of two MIDI notes.
2 7ofig‘ 777777 I I — The.frequency-based ;egmentation algorithm is-illus
2 ; e e trated in Figure 5, for a pitch track from a femafgera
'§ - — D excerpt with strong vibrato. There, dots denote Fbe
a 50**,;::\;5 77777 e e - - sequence under analysis, grey lines are the referen
ol —1 o segmentations, dashed lines denote the resuliseatta
| T i prior to time correction and final note labellingoasolid
30, os I s 2 25 lines stand for the final achieved results. It benseen
Time (sec) that the segmentation methodology works quite vrell
these examples, despite some minor timing erras th
Figure 4. Results of the PTC algorithm. may have even derived from annotation inaccuracies.

. . b) Female opera excerpt
There, we can see that some of the obtained toaject 6800 ‘

ries comprise glissando regions. Also, some oftthe 6700 _ = 8

jectories include more than one note and shoulfeth _ ss00lis—— ]

fore, be segmented. Zes00f = v S ]
= 6400¢ [ S S S - S

3.2 Frequency-based Segmentation = 6300l SR T S B

In frequency-based segmentation, the goal is tarsép o o

6100 L L L
all notes of different pitches that might be preéderthe 0 200 400 600 800

. L. . .. Time (msec)
same trajectory. This is accomplished by approximgat
the pitch sequence in each track by a set of piseew  Figure 5. lllustration of the frequency-based
constant functions (PCFs), handling glissando, ttega  segmentation algorithm.
vibrato, and frequency modulation in general. Each
detected function will then correspond to a MIDlteo
Despite this quantization effect, the original pitc
sequences are still kept so that the informatiomote
dynamics is not lost.

This is often a complex task, since musical ndtes,
sides containing regions of approximately stabke fr
guency, also contain regions of transition, wheee f
guency evolves until (pseudo-)stability, e.g., fisdo.
Additionally, frequency modulation can also occur,
where no stable frequency exists. Yet, an avertagdes
fundamental frequency can be determined.

Our problem, could, thus, be characterized as éne oyith segmentation based on pitch salience variafitive
finding a set of piecewise-constant/linear functighat objective is to separate consecutive notes at dmees
best approximates the original frequency curveuAs  pitch that the PTC algorithm may have mistakenly
known variables we have the number of functionsirth interpreted as forming only one note. This requires
respective parameters (slope and bias — null sibpe trajectory segmentation based on pitch-saliencenmain
PCFs are used), and start and end points. The prooghich mark the temporal boundaries of each note. To
dures conducted towards this goal are describeétmil  increase the robustness of the algorithm, notetsrsse
in [4]. detected directly from the audio signal and used to

In short words, our algorithm first quantizes the-f validate the candidate salience minima found inheac
guency values present in each track to the cldd#3t pitch track.
note numbers, thus obtaining a set of initial PCF&n, In fact, the salience value depends on the evidefice
in order to cope with glissandos and oscillatiogsuft-  pitch for that particular frequency, which is stgbn
ing from vibrato, as well as frequency jitter amtbes in  correlated, though not exactly equal, to the enefdgpe
the MPD stage, several stages of filtering areiagph  fundamental frequency under consideration. Conse-
order to merge relevant PCFs. quently, the envelope of the salience curve islamo

Atter filtering, the precise timings for the stagiend  an amplitude envelope: it grows at the note orisas,
ending points of each PCF are adjusted. We defige t then a steadier region and decreases at the dfisiis
start of the transition as the point of maximumiciive way, notes can be segmented by detecting cleanmaini
of the frequency curve, after it starts to mdevards in the pitch salience curve.
the nextnote, i.e., theoint of maximumderivative after In a first attempt for performing salience-based-se
the last occurrence of the median value. mentation, we developed a prominent valley detactio

Finally, we assign a definitive MIDI note number to algorithm, which iteratively looks for all cleardal min-
each of the obtained PCFs for each track. In otder ima and maxima of the salience curve.

increase the robustness of the assignment procedere  To this end, first, all local minima and maxima are
deal with ambiguous situations where it is notltpta found. Then, only clear minima are selected. This i
clear which is the correct MIDI value, a situatithat  accomplished in a recursive procedure that stayts b

The algorithm for frequency segmentation is based o
a minimum note duration of 125 msec. This threshold
was set based on the typical note durations in &vest
music. As Albert Bregman points out, “Western music
tends to have notes that are rarely shorter th@nmdec

in duration” [7, p. 462]. We experimented with aga
between 60 and 150 msec, but the defined thresifold
125 msec led to the best results. It is notewdtthy this
value is close to the one mentioned by Bregman.

3.3 Salience-Based Segmentation



finding the global minimum of the salience curveaxiy

the set of all local maxima is divided into two sats, There, gray horizontal lines represent the origaral
one to the left and another to the right of thebglo notated notes, whereas the black lines denote xhe e
minimum. The global maximum for each subset is theriracted notes. The small gray vertical lines stiamdhe
obtained. After that, the global minimum is selélcés a  correct segmentation points and the black verticeds
clear minima if its prominence, i.e., the minimunis-d are the obtained results of our algorithm. It cansben
tance from its amplitude and that of both the kfd that there is an almost perfect match when thigtieoi
right global maxima, is above the defined minimumis followed. However, in some excerpts extra segemen

peak-valley distanceninPvd. tion occurs, especially in those excerpts withrsjram-
Finally, the set of all local minima is also divilemto  plitude modulation.
two new intervals, to the left and right of the lughd The procedures carried out for salience-based seg-

minimum. The described procedure is then recungivelmentation are described in greater detail in [4].
repeated for each of the new subsets until allrciga-
ima and respective prominences are found. 4 |IDENTIFICATION OF MELODIC
One difficulty of the proposed approach is its latk NOTES
robustness. In fact, the best value fenPvd was found
to vary from track to track, along different song- e After the first two stages of our system (see Fegly,
cerpts. In fact, a unique value for that paramieteds to  several notes from each of the different instrument
both missing and extra segmentation points. Alsés i present in the piece under analysis are obtainedng
sometimes difficult to distinguish between noteiegd  which the main melody must be identified. The
and amplitude modulation in some performances. 8-her separation of the melodic notes in a musical enteisb
fore, we improved our method by performing onset denot a trivial task. In fact, many aspects of augito
tection and matching the obtained onsets with el organization influence the perception of the ma@iady
date segmentation points that resulted from oumpro by humans, for instance in terms of the pitch, tienland
nent valley detection algorithm. Onset detections wa intensity content of the instrumental lines in thenic
performed based on Scheirer [8] and Klapuri [9]. mixture. We start this stage by disposing of gluasave
Figure 6 illustrates our algorithm for detectioncah-  notes
didate segmentation points. There, the pitch sadien
curve of a trajectory from Claudio Roditi's perfaante 4.1 Elimination of Ghost Octave Notes
of “Rua Dona Margarida” is presented, where ‘o’rep
sent correct segmentation candidates and *’ deagte
tra segmentation points. Only the correct segmenta
candidates should be validated based on the found o
sets.

100

The set of candidate notes resulting from trajector
t segmentation typically contains several ghost axtav
notes. The partials in each such note are actually
multiples of the true note’s harmonics (if the ghos
octave note is higher than the true note) or sutiphes
(if it is lower). Therefore, the objective of tresep is to
discard such notes.

In short, we look for harmonic relations betweeln al
notes, based on the fact that some of the obtaiited
candidates are actually harmonics or sub-harmaofics
true fundamental frequencies in the sound wavereFhe
fore, we make use of the perceptual rules of samd

20 ‘ ‘ ‘ ‘ ganization designated as harmonicity and comman fat

0 03 06 09 12 [7]. Namely, we look for pairs of octave-relatedte®

Time (sec) : . .
with common onsets or endings and with common
Figure 6. lllustration of the salience-based modulation, i.e., whose frequency and salience se-
segmentation algorithm: initial candidate points. quences change in parallel. We then delete thd-leas
salient note if the ratio of its salience to théesae of
Bhe other note is below a defined threshold.

Regarding common fate analysis, we exploit the fact
that frequency sequences belonging to the same note
tend to have synchronized and parallel changesein f
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The results of the salience-based segmentation alg
rithm for an excerpt from Claudio Roditi's “Rua Dmon
Margarida” are presented in Figure 7.

80 quency and intensity (here represented by pitch sal
= 75} , ence). Thus, we measure the distance between fregue
2 = curves for pairs of octave-related note candidédési-
570’ — ] larly, we measure the distance between their sadien
S o5 = _‘_ - curves. Formally, the distance between frequencyesu
) e is calculated according to Eq. 1, based on [10]:
= 60 —+——— -

2
55 : ] ‘ : ‘ ; ty ;
0 1 2 3 4 5 6 . 1 f; () fi(®)
' d.(i,j)= L -
ime (se©) Sl ;[avg(fi(t)) wg(fty | @

Figure 7. Results of the salience-based
segmentation algorithm. whered;, represents the distance between two frequency
trajectoriesfi(t) andfi(t), during the time intervalt{, t,]



where they both exist. The idea of Eq. (1) is taled¢he Figure 9. Results of the algorithm for extraction
amplitude of each curve by its average, thus, nlizing of salient notes.
it. An identical procedure is performed for theiesate

cUrves The results of the implemented procedures are-illus

This procedure is illustrated in Figure 8 for twarh trated in Figure 9, for an excerpt from Pachelbels

monically-related notes from an opera excerpt withon N D. There, the correct notes are deplctegray
strong of vibrato. We can see that the normalized and the black continuous lines denote the obtameld

guency curves are very similar, which provide geotd 23% ?rgtrisihzh%o(igsgﬁriilrzgﬁznﬂ;gd eiorvt/hee Q:r:eg;qa}[h
dence that the notes originated from the same sourc ge.

some erroneous notes are extracted, whereas trie me
ody notes are excluded. Namely, some octave errors

106 occur.
_ L04r 1 One of the limitations of only taking into consider
T 102 , tion pitch salience is that the notes comprisirgy rtel-
24l | ody are not always the most salient ones. In tiig-s
E tion, erroneous notes may be selected as belortging
5 09 7 the melody, whereas true notes are left out. Thisair-
0.96} 1 ticularly clear when abrupt transitions betweeresare
0.94 ‘ ‘ ‘ found, as illustrated in Figure 9.
0 10 Ting(k) 30 40 In fact, small frequency intervals favor melody eph
ence, since smaller steps in pitch result in me®diore
Figure 8. lllustration of similarity analysis of likely to be perceived as single 'streams'. Hemeeim-
frequency curves. proved our method by smoothing out the melody con-

tour, as follows.

Additionally, we found it advantageous to measure .
the distance between the normalized derivativeBenf 4.3 Melody Smoothing
quency curves (and, likewise, the derivatives titsae  As referred to above, taking into considerationyahie
curves). In fact, it is common that these curveshdigh  most salient notes has the limitation that, frediyen
absolute distances despite exhibiting the sameds¢ren non-melodic notes are more salient than melodis.one
The distance between derivatives is used as anoth@s a consequence, erroneous notes are often pigked
measure of curve similarity. whereas true notes are excluded. Particularly, pabru
To conclude the common modulation analysis, we astransitions between notes give strong evidence that
sume that the two candidate notes have parallelggsa wrong notes were selected. In fact, small frequeray
if any of the four computed distances (i.e., imjfrency, sitions favor melody coherence, since smaller steps
salience, or their derivatives) are below a thrislud  pitch hang together better [7].
0.04. Finally, we eliminate one of the notes ifs&dience Briefly, our algorithm starts with an octave cotren
is less than 40% of the most salient note if thiéfgdby  stage, which aims to tackle some of the octavergrro
one octave, 20% if they differ by two octaves, @od that appear as a consequence of the fact thatlrwra

forth. monically-related notes are deleted at the notaieds-
tion stage.
In the second step, we analyze the obtained notés a
4.2. Selection of the Most Salient Notes look for regions of smoothness, i.e., regions wtibese

are no abrupt transitions between consecutive notes
Here, we define a transition as being abrupt ifither-
vals between consecutive notes are above a fiih, i
seven semitones, as illustrated in Figure 10. Thiee
bold notes &, a, andag) are marked as abrupt. In the
same example, four initial regions of smoothness ar
detected (R Ry, Rz and R).

As previously mentioned, intensity is an importane
in melody identification. Therefore, we select thest
salient notes as an initial attempt at melody ifieat
tion.

The salience principle makes use of the fact that t
main melodic line often stands out in the mixturaus,
in the first step of the melody extraction stadpe, most

salient notes at each time are selected as initébdy 74

Rl RS
note candidates. Details of this analysis are plexviin g
[1, 2]. E 70 R,
! < 68
‘é 66
90 ‘ ‘ ‘ ‘ : 8 2‘2‘ R,
- s
-g 70F —_ - -_— - Time
[= -_— - -_—
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2 o e Figure 10.Regions of smoothness.
[a] — 4
E50 — el :,,
o ‘ ‘ ] Then, we analyze the regions of smooth, deleting or
0 1 2 3 4 5 6 substituting notes corresponding to abrupt traosdj as

Time (sec) described in detail in [1, 2].



The results of the implemented procedures are-illusthat were manually annotated with the correct notss
trated in Figure 11, for the same excerpt from Bhch for the MEC-04 database, 20 excerpts, each aroOnd 2
bel's Canon presented before. We can see thatamdy sec, were automatically annotated based on monaphon
erroneous note resulted (signaled by an ellipsgjctw  pitch estimation from multi-track recordings, as- de
corresponds to an octave error. This example iicpar  scribed in [11]. From these, we employed the define
larly challenging to our melody-smoothing algorithm training set, consisting of 10 excerpts.
due to the periodic abrupt transitions present., Vet Regarding multi-pitch detection, we achieved 81.0%
performance was very good. average pitch accuracy (nearly the same, i.e.,9%1iR

octave errors are ignored).
90 ‘ ‘ ‘ ‘ ‘ As for note determination, pitch tracks were seg-
- mented with reasonable accuracy. In terms of freque
| - - based segmentation, average recall (i.e., the page
A - - - - of annotated segmentation points correctly idesuifi
— o -— - was 72%, and average precision (i.e., the percerntfg
[ B e identified segmentation points that correspondeddo
rE-o0 e tual segmentation points) was 94.7%. Moreover, the
- average time error was 28.8 msec (which may batklig
: ‘ : distorted by annotation errors), and the averagetere
Time (sec) error rate for the melodic notes was 0.03%.

Regarding salience-based segmentation, many false
positives resulted, with a consequent decreaseeirage
precision (41.2%), against 75.0% average recall.

As for the elimination of ghost notes, an averafje o
4.4 Elimination of False Positives 38.1% of notes from the note-determination stageewe

) eliminated, among which only 0.3% of true melodic
When pauses between melody notes are fairly longiac were inadvertently deleted.

spurious notes, resulting either from noise or awknd Finally, in terms of melody identification, 84.4%-a
instruments, may be included in the melody. Wea5e accuracy was attained considering only the me
observed that, usually, such notes have lowerrs@® |,gic notes. The achieved performance decreases whe
and shorter durations, leading to clear minimahe t e take also into account the regions where themai
pitch salience and duration contours. melody is absent. There, no notes should be output.
Regarding the pitch salience contour, we start byl’hus, in these “empty” frames we define a targebF0

computing the average pitch salience of each "'Dth?j OHz which should be matched against the generated
extracted melody and, then, look for deep valleyhe  ejoqy In this case the melody detection accuracy
p'tf:h salience sequence. As W'th. sahence-_basemieseg drops to 77%. In fact, our algorithm shows a litiita
tation, we detect clear minima in the salience eont ;. disposing of false positives (i.e., accompanimen
and delete notes in deep valleys of the pitch saie 5y notes): 31.0% average recall and 52.8% awerag
contour. ding the durati ded likePrecision. This is a direct consequence of the flaat
_Regarding the urbatlon (aonﬁoug we proceeded likene gigorithm is biased detecting the maximum of me
wise. However, we observed that duration variatewes  |,qic notes, no matter if false positives are ideld. A

m_uch more common than _p|§ch sallenc_e variations. Irbilot study employing note clustering was condudied
this way, we decided to eliminate only isolatedur i ,rove this limitation, which needs to be furtieabo-
duration transitions, i.e., isolated notes deliohitey iy,
much longer notes. Additionally, in order not tadiver- We also evaluated our system in the MIREX 2005
tently delete short ornamental notes, a minimurfedif  y,apase. There, the average accuracy dropped1t61
ence .Of two s_em|-_tones was deﬂ_ned. . (considering both melodic and non-melodic frames).
This algorithm is described with more detail in.[4] The main apparent cause for this decrease waghthat
signal to noise ratio in the used excerpts wassodia-
5 EXPERIMENTAL RESULTS vourable, i.e., the ratio of the energy of the rdagart

against “all the rest” was not so high.
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Figure 11. Results of the melody-smoothing
algorithm.

One difficulty regarding the evaluation of MIR systs
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